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A review of 4 � 4-matrix notation and of tensor formalism focused on

crystallographic applications is presented. A discussion of examples shows how

this notation simpli®es tasks encountered in crystallographic computing.

1. Introduction

This paper presents a summary of tensor formalism, which is

very important in crystallography, and especially in crystal-

lographic computations. Most of the material described here is

well known but was published in very old books and papers

(Einstein, 1916; Seitz, 1936; Bienenstock & Ewald, 1962;

Bradley & Cracknell, 1972; Hall, 1981 etc.). We feel that it is

high time to recall this formalism in a review focused on its

application to crystallographic computing and adaptation to

high-level programming languages.

Crystallography deals with objects de®ned in various

coordinate systems, e.g. the fractional coordinate system (used

for data or symmetry operators), the grid coordinate system

(in which computations are done), the Protein Data Bank

(PDB) coordinate system, or the graphics coordinate system

(used to display data on a computer screen). Moreover, these

objects may have different transformation properties.

Distinguishing mathematical objects with respect to their

transformation properties is very important when writing

crystallographic software. In particular, keeping track of

coordinate systems and transformation properties of variables

allows for more ef®cient and less error-prone programming.

The importance of consistency in notation for further

development of the ®eld has been recognized by the IUCr by

appointing the Commission on Crystallographic Nomen-

clature. In one of their reports (Trueblood et al., 1996), a

uniform notation for atomic displacement parameters is

proposed, including distinguishing between contravariant and

covariant quantities. The present article follows this recom-

mendation by providing a review of a uniform notation for

coordinate changes for all crystallographic quantities.

A natural way of coupling program variables to their crys-

tallographic properties is the object-oriented programming

style. With its use, one can implicitly de®ne operations allowed

for each type of variable. Operations explicitly de®ned for one

coordinate system may be implicitly extended to other cases

by the compiler. This is especially important when new func-

tionality is added to an already existing application. In the

present paper, we recall a mathematical formalism, which can

be naturally used for de®ning classes of basic objects

encountered in crystallographic calculations. We start by

presenting a consistent representation for the basic variable

types encountered in crystallography (xx2 and 3). Later, we

discuss more complex applications and demonstrate how this

notation works. This will include examples of de®ning view-

ports for graphics display and transforming the anisotropic

temperature factor. These rules apply to both real and

reciprocal space, including calculation of derivatives.

2. Crystallographic 4-vector notation

In this section, we present the 4-vector notation, which proves

very useful for changing coordinate systems in crystallography.

For the purposes of this section, it is enough to distinguish

between vectors and covectors. A more detailed discussion of

covariant and contravariant quantities will be presented in x3.

2.1. Real-space 4-vector notation

The real-space 4-vector notation is well known in crystal-

lography (Hahn, 1995; Hall, 1981) as well as in general

computing (Bradley & Cracknell, 1972; Seitz, 1936).

Throughout the paper, we will write 3-vectors and 3-matrices

in bold type and 4-vectors and 4-matrices in bold-italic type.

Let

x � x

1

� �
;

where x is a real-space vector. Let Sg denote a crystallographic

symmetry operator. Crystallographic symmetry operators are

isometries. They can be represented as a superposition of a

matrix Rg (with det Rg � �1) and a non-primitive translation

by vector tg. Then, the symmetry operator Sg transforms a

vector x in the real space as follows:

Sg�x� � Rgx� tg:

One can represent the transformation Sg as a 4� 4 matrix Sg

as follows:

Sg � Rg tg

0 0 0 1

2664
3775:



In this notation, the action of Sg is represented by multi-

plication only:

Sgx � Rg tg

0 0 0 1

2664
3775

x

y

z

1

2664
3775 � Rgx� tg

1

� �
: �1�

The composition of two isometries is traditionally described

by a somewhat complicated formula

Sg1
Sg2

x � Rg1
Rg2

x� Rg1
tg2
� tg1

:

In the 4-vector notation, a composition of isometry transfor-

mations is expressed as a multiplication of their corresponding

4� 4 matrices:

Sg1g2
x � Sg1

� Sg2
x

� Sg1
Sg2

x

1

� �� �
� Rg1

Rg2
x� Rg1

tg2
� tg1

1

� �
:

A consequence of this equation is another convenient feature

of this notation:

Sgÿ1 � Sÿ1
g ;

where

Sÿ1
g � �Rg�ÿ1 ÿ�Rg�ÿ1tg

0 0 0 1

2664
3775:

Note that tgÿ1 � ÿ�Rg�ÿ1tg and

�Rÿ1
g �T � Rg: �2�

Moreover,

det Sg � det Rg;

which allows us to use the determinant of S in place of the

determinant of R, for example when distinguishing between

rotations and re¯ections.

2.2. Reciprocal-space 4-vector notation

The convention presented in this subsection has been

partially described by Bienenstock & Ewald (1962) and was

subsequently used by Ten Eyck (1973). However, they did not

distinguish between vectors and covectors, and consequently

the transposed form of the symmetry operator had to be used

in the reciprocal space. We present a means of keeping the

same form of the symmetry operator in both real and reci-

procal space. The data in the real space, f �x�, are related to the

reciprocal-space data F�h� by the Fourier transform de®ned by

F�h� :�P
x

f �x� exp�2�i h � x�:

In the reciprocal space, we will use a 4-vector notation as well.

Vectors from reciprocal space transform differently to real-

space vectors. To distinguish them, we will call reciprocal-

space vectors (and any other vectors transforming in the same

way) covectors and we will write vectors as columns and

covectors as rows. A detailed discussion of vectors and

covectors will follow in the next section. As in the real-space

case, 3-covectors can be extended to 4-covectors. Unlike in the

real space, the last entry in such a 4-covector is generally

different from 1:

h �
� � � h k l �

� �
:

The symbol � denotes a phase angle associated with the vector

h (calculations involving � will be performed modulo 1). The

meaning of the symbol �h �� is the following:

F h �
� �ÿ �

:� exp�2�i��F�h�: �3�

Note that this de®nition should be changed if a different

Fourier transform de®nition is used. In this setting, the action

of a symmetry operator Sg (which corresponds to the action of

Sÿ1
g in the real space) in the reciprocal space can be described

simply by multiplying a general 4-covector by the matrix of Sg,

as introduced by (1):

h �
� �

Sg � hRg h � tg � �
� �

; �4�

where h � tg denotes the usual scalar product. Note that, owing

to the special property of matrix Rg [see equation (2)], one can

use �Rÿ1
g �T instead of Rg in equation (5). However, this cannot

be done for non-orthogonal Rg (see discussion in x3). The

symmetry operator Sg in the reciprocal space is represented by

the same matrix as in the real space (transposition not

needed).

Let us show how our notation works with the Fourier

transform. The symmetry operator Sg acting on vectors in the

real space induces a corresponding operator S�g acting in the

reciprocal space on the Fourier transforms of the real-space

functions. Let S�gF�h� denote the Fourier transform of a

function f �Sÿ1
g x�. Then (Bricogne, 1993; Rowicka et al., 2003)

S�gF�h� � exp�2�ih � tg�F�hRg�: �5�

Using (5) and (3), we can compute

S�gF h �
� �ÿ � � exp�2�i��S�gF�h�

� exp�2�i�� exp�2�i�h � tg�F�hRg�:

Furthermore,

exp�2�i�� exp�2�i�h � tg�F�hRg� � F hRg h � tg � �
� �ÿ �

:

By (4),

F hRg h � tg � �
� �ÿ � � F h �

� �
Sg

ÿ �
:

Thus we have shown that in our formalism the description of

the interaction between crystallographic symmetry and the

Fourier transform has the form

S�gF h �
� �ÿ � � F h �

� �
Sg

ÿ �
;

which is better suited for description of the composition of

multiple af®ne transformations than the traditionally used

equation (5).
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3. Covariant and contravariant quantities

Vectors and tensors in crystallography were quite extensively

dealt with by Patterson (1959) and Sands (1982). In this

section, we outline the theory of transformation ®rst, and then

we show how to extend and apply that theory to the 4-vector

notation.

3.1. Scalars, vectors and covectors

Depending on their transformation properties, objects

encountered in crystallography can be classi®ed as scalars,

vectors, covectors, covariant or contravariant tensors etc. (see

Tables 1 and 2).

By de®nition, scalars are quantities that remain invariant

during coordinate changes.

In the previous section, we were distinguishing between

vectors and covectors with no thorough explanation, now we

will discuss this subject in more detail.

The difference between a vector and a covector is in how

they behave during coordinate changes. Let xi denote coor-

dinates of a vector x (such as a position vector of an atom),

expressed in a certain basis (for example, in the crystal-

lographic direct lattice basis a1, a2 and a3: x �
x1a1 � x2a2 � x3a3). Let us consider a coordinate change from

the coordinates xi �i � 1; 2; 3� to the coordinates x0i, given by

functions f i,

x0i � f i�x1; x2; x3�; �6�

such that the coordinate change (6) is invertible. Then, the

relationship between the differentials of the new coordinates

and the differentials of the old ones is the following:

dx0i �P3

j�1

f i
j dxj; �7�

where f i
j � @fi=@x

j. From now on, we shall use the Einstein

summation convention (Einstein, 1916): if an index appears

twice in an expression, once as a subscript and once as a

superscript, a summation over this index is thereby implied

and the summation sign is suppressed. For example, within this

convention, equation (7) reads

dx0i � f i
j dxj; �8�

where the implicit sum is over j � 1; 2; 3. The repeating

indices are often called dummy indices. In what follows, we

will use the Einstein notation extensively, instead of using

transposed matrices etc.

The components of a vector are transformed in the same

way as differentials of coordinates [see equation (8)]. By

de®nition, such quantities are called contravariant and are

denoted by superscripts. They transform as basis vectors of the

dual base, that is in crystallography as the reciprocal-lattice

basis vectors a1, a2 and a3.

One can compute the derivatives ai � @a=@xi of a scalar a

with respect to the new and old coordinates. Their relationship

is the following:
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Table 1
Scalars, vectors, covectors.

In the ®rst row, we describe the notation, in the second row, we list transformation properties of these quantities, in the next row, we give general examples, in the
last row, we give examples of speci®c physical quantities related to crystallography.

Scalars Vectors Covectors

Notation a x � xiai �
x1

x2

x3

24 35 h � hi ai � h1 h2 h3

� �
Transformation properties Invariant Contravariant, i.e. x0i � f i

j xj Covariant, i.e. x0i � h
j
ixj

Examples Physical invariants Real-space coordinates xyz (fractional,
grid, PDB etc)

Reciprocal-space coordinates (re¯ection
indices hkl)

Numbers Derivatives of a scalar with respect to
reciprocal-space coordinates

Derivatives of a scalar with respect to
real-space coordinates

Crystallographic quantities � (electron density) @F=@h
@F=@k
@F=@l

24 35 @�=@x @�=@y @�=@z
� �

F (structure factor)
I (intensity)

Table 2
Second-order tensors.

In the ®rst row, we describe the tensor type, in the following rows, we provide examples.

Tensors Tij Tensors Tij

Transformation properties T 0ij � f i
kf

j
l Tkl T 0ij � hk

i hl
jTkl

Crystallographic examples @�=@Bij @�=@ �Bÿ1�ij
Bij;Uij [atomic anisotropic displacement tensor (crystal

system)]
�Bÿ1�ij; �Uÿ1�ij [inverse of atomic anisotropic displacement

tensor]
gij (metric tensor in the reciprocal space) gij (metric tensor in the real space)



a0i � ajh
j
i; �9�

where �hj
i� is the inverse of the matrix � f i

j �:
Quantities transformed as derivatives with respect to

coordinates are called covariant. Vectors whose components

transform in the same way are called covectors. In crystal-

lography, covariant quantities are re¯ection indices hkl.

Covectors transform as the basis vectors, in crystallography as

the direct-lattice basis vectors a1, a2 and a3. It is now obvious

that derivatives of a scalar with respect to components of a

vector form a covector.

Crystallographic examples and transformation properties of

vectors and covectors are provided in Table 1.

3.2. Tensors

Let d be the dimensionality of the space. Objects consisting

of dN components that transform as products of k covariant

quantities and l contravariant quantities, where k� l � N, are

called k-covariant l-contravariant Nth-order tensors. In

general, many quantities may be viewed as tensors: scalars are

tensors of order zero, vectors are contravariant tensors of

order one, while covectors are covariant ®rst-order tensors.

Usually, the term tensor is applied only to tensors of order two

or higher.

For example, a second-order contravariant tensor Tij would

be transformed as

T 0ij � f i
kf

j
l Tkl: �10�

The second-order covariant tensor Tij transforms as

T 0ij � hk
i hl

jTkl: �11�
The second-order tensor Ti

j with both covariant and contra-

variant components would transform as

T 0ij � hi
kf l

j Tk
l : �12�

Crystallographic examples and transformation properties of

second-order covariant and contravariant tensors are

provided in Table 2.

3.3. Transformation of coordinates in 4-vector notation

In our notation, the fourth component of a vector is of a

different nature to the other ones, in particular, in the real

space it always equals 1. Therefore, in the real space, the only

coordinate transformations that are allowed are such that

preserve the fourth component. In the notation introduced in

the previous section, this condition restricts the form of the

coordinate changes to

x01 � f1�x1; x2; x3; 1�
x02 � f2�x1; x2; x3; 1�
x03 � f3�x1; x2; x3; 1�
x04 � 1:

We need to introduce a convention to de®ne a derivative with

respect to this fourth coordinate. It is crucial that, with the

assumed convention, the transformation properties of the

fourth component are compatible with those of the ®rst three

coordinates. In this paper, we show that a good choice is to

assume

@fi

@x
� @fi

@x1
;
@fi

@x2
;
@fi

@x3
; 0

� �
; for i � 1; 2; 3;

and

@f4

@xi
� �4i:

The Kronecker symbol �jk is de®ned as follows:

�jk � �j
k � �jk � 1 for j � k

0 for j 6� k.

�

3.3.1. Affine transformations. Most coordinate systems

used in crystallography are related by af®ne transformations.1

By af®ne transformation, we understand a transformation S

such that, for any 3-vector x,

S�x� � Rx� t:

In the 4-vector notation, such an S is given by

S � �S��� � R t

0 0 0 1

2664
3775: �13�

Here, in contrast to the crystallographic symmetry operator

given by equation (1), the matrix R is a general invertible

matrix. In particular, af®ne transformations may not preserve

distances (i.e. be non-orthogonal) or they may not preserve

angles (i.e. be non-conformal).

The 4-vector notation allows simpli®cation of af®ne trans-

formations of vectors and covectors. For a 4-vector x, its

transformed coordinates x0� are related to the original coor-

dinates x� by

x0� � S�
x
; �14�
where S is given by equation (13). In the matrix form,

x0 � Sx � R t

0 0 0 1

2664
3775 x

1

� �
� Rx� t

1

� �
� x0

1

� �
:

On the other hand, a 4-covector h transforms as follows:

h0� � �Sÿ1���h�; �15�
where

Sÿ1 � ��Sÿ1���� � Rÿ1 ÿRÿ1t

0 0 0 1

2664
3775: �16�

In the matrix form, the transformation of a covector h reads
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h0 � hSÿ1 � h �
� � Rÿ1 ÿRÿ1t

0 0 0 1

26664
37775

� hRÿ1 ÿhRÿ1t� �� �
� h0 �0
� �

:

Observe that, during an af®ne transformation of a covector,

the fourth component of the transformed covector changes, in

contrast to the case of vectors. The reason is that, in the

covariant (reciprocal) space, the translational part of S is not

realized as translation of coordinates but as phase shift, in the

sense of equations (3), (4) and (5).

Many objects encountered in crystallography can be

described by quadratic forms (cf. Table 2). Af®ne transfor-

mations of symmetric tensors corresponding to quadratic

forms can also be simpli®ed by the 4-vector notation. A

quadratic form G is de®ned by

G�x� :� xTGx � Gijx
ixj;

where G is a symmetric matrix. Provided that x is a contra-

variant vector, the matrix G transforms as a 2-order covariant

tensor. In order to perform af®ne transformations of tensors

conveniently, we switch to the 4-vector notation. This will

involve extending 3� 3 tensors to 4� 4 tensors, compatible

with the 4-vectors and 4-covectors introduced in xx2.1 and 2.2,

respectively. Quadratic forms are commonly applied to

describing quadratic surfaces. In three dimensions, the general

equation of a quadratic surface centered at p is given by

�xÿ p�TG�xÿ p� � c; �17�
where c is a real number.

We propose a simpler form of the general quadratic surface

equation:

xTGx � 0;

where

x � x

1

� �
and G � G ÿGp

ÿ�Gp�T pTGpÿ c

� �
: �18�

Let S be an af®ne transformation given by (13). Then G will

transform as follows:

G0
� � �Sÿ1��
�Sÿ1���G��: �19�
Using formula (19), one can compute that G0 has the same

form as G. Namely,

G0 � G0 ÿG0p0

ÿ�G0p0�T �p0�TG0p0 ÿ c

� �
;

where

G0 � �Rÿ1�TGRÿ1 and p0 � Rp� t � S�p�:
As expected, the 3� 3 tensor G transforms as a second-order

covariant tensor. Observe also that the transformed quadratic

form G0 corresponds to a surface centered at p0, that is the

image of p, the center of the surface related to the original

form G.

In some cases, the quantity of interest in (17) is de®ned by

the inverse of a given matrix. Then we can rewrite (17) with

H :� Gÿ1:

�xÿ p�THÿ1�xÿ p� � c:

In the 4-vector notation,eH�x� :� xTHÿ1x � �Hÿ1���x�x�

and

Hÿ1 � ��Hÿ1���� � Hÿ1 ÿHÿ1p

ÿ�Hÿ1p�T pTHÿ1pÿ c

� �
:

It follows that

H � �H��� � Hÿ 1
c ppT ÿ 1

c p

ÿ 1
c pT ÿ 1

c

� �
:

Observe that H is a contravariant tensor, whereas Hÿ1 is a

covariant one.

One can also de®ne a quadratic form F for a covector h by

F�h� :� hFhT :

The corresponding matrix F transforms as a 2-order contra-

variant tensor. However, in this case, there will be no quad-

ratic surfaces centered at q 6� �0; 0; 0�. The intuitive

explanation is the same as in the case of the af®nely trans-

formed covector: in the covariant space (such as the reciprocal

space, space of normal covectors or space of derivatives),

translation of the coordinates is not possible. Therefore, the

centers of the quadratic surfaces in the covariant space do not

change during af®ne transformations. For simplicity, we

consider in the reciprocal space only quadratic surfaces that

are centered at 0 :� �0; 0; 0�. This leads to the following de®-

nition of the symbol F in the 4-vector notation:

F � F 0T

0 0

� �
:

The symbol F encoding the form F transforms as a contra-

variant second-order four-dimensional tensor

F 0
� � S
�S��F��: �20�
In matrix notation,

F 0 � F0 0T

0 0

� �
;

where

F0 � RFRT :

4. Examples

Now we will show several examples of our notation facilitating

issues encountered in practice.
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4.1. 3D graphics view-port: definition and transformations

In graphical rendering programs, one has to de®ne a view-

port, that is a region of considered space that is displayed at a

given moment. Below we discuss two widely used types of

view-ports and show how easily one can perform af®ne (i.e. in

general not orthogonal) transformation of them using our

notation.

4.1.1. Polyhedral view-ports. The most commonly used

type of view-port has the shape of a polyhedron, i.e. a volume

delimited by a number of polygons. An example of a poly-

hedron speci®c to crystallography is the asymmetric unit. A

convenient way of de®ning a polyhedral view-port is by listing

a number of (usually six) cutting planes, with distinguishable

sides. In fact, this is how the standard asymmetric units are

de®ned in International Tables for Crystallography (Hahn,

1995). For a plane �, its positive side will be identi®ed with the

half-space ��, which contains the view-port. A point belongs

to the view-port � when it belongs to all half-spaces de®ning

it,

� �
\6

i�1

�i�: �21�

The condition for a point x � �x1; x2; x3� to belong to a posi-

tive half-space �� can be described by four numbers, a, b, c

and d:

ax1 � bx2 � cx3 � d> 0: �22�
In particular, one can describe such a half-space by giving a

point p with coordinates �p1; p2; p3�, belonging to the cutting

plane, and providing three numbers a, b and c that specify the

orientation of the plane. Then,

ax1 � bx2 � cx3 ÿ ap1 ÿ bp2 ÿ cp3 > 0: �23�
From the above equation, it follows that a, b, c transform as

components of a covector. Let us denote this three-dimen-

sional covector by n. Observe that n is normal to the cutting

plane � and it points towards the inside of the view-port.

We will now switch to 4-vector notation and demonstrate

how easily af®ne transformations of the thus de®ned view-port

can be performed within the 4-vector formalism. In this

notation, n is a 4-covector:

n � a b c �ÿap1 ÿ bp2 ÿ cp3�� �
: �24�

Now, the condition for a 4-vector x

x �
x1

x2

x3

1

2664
3775

to belong to the half-space �� reads

n�x� > 0; �25�
where the implicit summation is over � � 1; 2; 3; 4. Let us

transform the coordinates by an af®ne transformation S. The

transformed coordinates x0� are related to the original coor-

dinates x� according to equation (14), the coordinates of n

transform as in equation (15). Let us show that condition (25)

is preserved during this transformation:

n0�x0� � �Sÿ1�
�n
S��x� � f�Sÿ1�
�S��gn
x� � �
�n
x� � n�x
�:

This proves that the description of view-port cutting planes by

points from these planes and normal covectors is invariant

with respect to af®ne transformations.

To show how it works in practice, we shall now give a simple

example of this procedure. Let us consider an af®ne trans-

formation S given for a point x � �x1; x2; x3� by

S
x1

x2

x3

24 35 � 2x1 ÿ 3

x2

x3

24 35:
Let �� be the half-space described by the point p � �1; 0; 0�
and the covector n � �1; 1; 0� (see Fig. 1), according to the

inequality (23):
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Figure 1
Transformation of half-spaces (two-dimensional projections on the x1x2

plane). Upper panel: half-space �� and objects de®ning it; its normal
covector n and point p. Center panel: transforming n as a covector
(CORRECT). Lower panel: transforming n as a vector (WRONG,
because the image of n is no longer orthogonal to the image of �).



x1 � x2 ÿ 1> 0: �26�
In the 4-vector notation,

x �
2x1 ÿ 3

x2

x3

1

2664
3775; p �

1

0

0

1

2664
3775 and S �

2 0 0 ÿ3

0 1 0 0

0 0 1 0

0 0 0 1

2664
3775:

Moreover,

n � 1 1 0 ÿ1
� �

:

To transform the covector n, we need to invert S ®rst:

Sÿ1 �
1
2 0 0 3

2

0 1 0 0

0 0 1 0

0 0 0 1

2664
3775:

After the transformation by S, the half space �0� will be

de®ned by the following 4-covector n0:

n0 � Sÿ1n � 1
2 1 0 1

2

� �
:

Observe that, from the fourth component of n, one can

recover coordinates of points belonging to the transformed

cutting plane (we need this to know where to anchor the

normal covector n). According to the formula (24),

ÿn0ip
0i � ÿp1 ÿ p2 � n4 � 1

2 :

The above is satis®ed in particular by

p0 � Sp �
ÿ1

0

0

24 35:
The transformed p0, �0� and n0 are presented in the center

panel of Fig. 1. The lower panel shows the consequences of

transforming n incorrectly (that is as a contravariant vector

instead of a covector).

The above discussion is only an example of usage of

covectors for de®ning planes. Another example, important in

crystallography, is de®ning lattice planes by their Miller

indices.

4.1.2. Spherical view-ports. In some cases, it is convenient

to display objects located in the neighborhood of some point

p. Then, a natural choice for a view-port is a sphere centered

at p � �p1; p2; p3�, with a given radius r. In Cartesian coordi-

nates, the condition for x � �x1; x2; x3� to belong to the

spherical view-port reads

�x1 ÿ p1�2 � �x2 ÿ p2�2 � �x3 ÿ p3�2 � r2

or, in the Einstein notation,

Gij�xi ÿ pi��xj ÿ pj� � r2: �27�
Here, the 3� 3 second-order covariant tensor Gij is trivial,

that is Gij � �ij. The left-hand side of the de®nition of the

sphere (27) is a quadratic form in the contravariant variable x.

Hence, it can be encoded into a 4� 4 covariant tensor, as in

equation (18):

G �
1 0 0 ÿp1

0 1 0 ÿp2

0 0 1 ÿp3

ÿp1 ÿp2 ÿp3 �p1�2 � �p2�2 � �p3�2 ÿ r2

2664
3775:

Now the view-port can be de®ned as simply as:

G��x�x� � 0: �28�
The left-hand side of the view-port condition (28) transforms

as follows:

G0��x0�x0� � G
��Sÿ1�
��Sÿ1���S��S��x�x�; �29�
where �S��� is an af®ne transformation given by equation (1).

The transformed tensor G0 de®nes the image of the sphere

(27) in the same manner as the original sphere is encoded in G:

G0��x0�x0� � 0: �30�
The sphere (27) is expressed in the new coordinates by �G0���:

G0�� � �Sÿ1�
��Sÿ1���G
�:

Note that we have never used the fact that we are dealing with

a sphere and not e.g. with an ellipsoid. This means that the

above argument is valid for any quadratic surface.

4.1.3. Transformations of anisotropic atomic temperature
factor. Let y, with crystallographic coordinates �yi�, denote the

equilibrium position of an atom. The measured atomic elec-

tron density �at�y� can be described (Giacovazzo et al., 1992)

by the convolution of the probability distribution of the

equilibrium position of the center of the atom, p, and of the

atomic electron density relative to this position, �a:

�at�y� �
R
�a�yÿ x�p�x� dx:

The probability p is expressed in crystallographic coordinates

relative to the center of the atom. In the ®rst approximation of

p, we consider only rigid-body thermal motions of an atom.

These thermal motions result from many interactions. There-

fore, from the central limit theorem, it follows that they can be

well described by an anisotropic Gaussian distribution:

p�x� � �2��ÿ3=2�det U�ÿ1=2 exp�ÿ 1
2 xi�Uÿ1�ijxj�; �31�

where U � �Uij� is the variance±covariance matrix, that is

Uij � hxixji, where hxixji denotes mean values of xixj. Since U

is expressed in coordinates relative to the center of the atom,

clearly it does not change with translations (see also discussion

in x3.3.1). Under rotations, the tensor U transforms as a

contravariant tensor.

On the other hand, Uÿ1 is a covariant tensor and transforms

according to (19). Note that the equation

xTUÿ1x � c �32�
describes a quadratic surface of constant probability. Since we

consider only localized atoms, the only allowed type of surface

is an ellipsoid. Therefore, all eigenvalues of the matrix ��Uÿ1�ij�
must be positive, and so must the eigenvalues of the

matrix �Uij�.
The ellipsoids of constant probability, or vibrational ellip-

soids, are often employed in the graphical description of
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thermal motions of atoms. The three-dimensional tensor Uÿ1

can be extended to the four-dimensional tensor Uÿ1 such that

equation (32) is preserved during the transformation. This is

done as described in x3.3.1. Namely, we extend ��Uÿ1�ij� to

��Uÿ1���� as follows:

��Uÿ1���� �
0

Uÿ1 0

0

0 0 0 1

2664
3775 �33�

and transform under af®ne transformations S � �R; t� given

by (13) according to (19). Namely, the resulting tensor �Uÿ1�0
is

�Uÿ1�0 � �Uÿ1�0 ÿ�Uÿ1�0t
ÿ��Uÿ1�0t�T tT�Uÿ1�0tÿ c

� �
;

where �Uÿ1�0 � �Rÿ1�TUÿ1Rÿ1.

5. Discussion

The main objective of this paper is to summarize a formalism

for ef®cient description of various tasks encountered in

computational crystallography. The history of science shows

that the right language is often important in the solution of

a problem. The best known example is the derivation of

Einstein's theory of relativity. The presented approach to

describing coordinate system transformations will simplify

both presentation and implementation of subjects such as ab

initio phasing of macromolecules using non-crystallographic

symmetry and application of the maximum-entropy principle

to ensure positive de®nition of the atomic anisotropic

temperature factors. This paper forms a foundation for

designing object classes that will be a part of a versatile

crystallographic library.

The authors are grateful to the referees for helpful

suggestions. This research was supported by National Institute

of Health grants GM 53163 and GM 62414.
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